
Performance Comparison of Security Mechanisms for Grid Services

Satoshi Shirasuna Aleksander Slominski Liang Fang Dennis Gannon
Department of Computer Science, Indiana University.

215 Lindley Hall, 150 S Woodlawn Avenue, Bloomington, IN 47405-7104
fsshirasu, aslom, lifang, gannong@cs.indiana.edu

Abstract

Security is one of the most important features for Grid
services. There are several specifications used to add se-
curity to Grid services, and some of them have been imple-
mented and are in use. However, since most of the security
mechanisms involve slow XML manipulations, adding secu-
rity to Grid services introduces a big performance penalty.
In this paper, we introduce various security mechanisms
and compare their features and performance. Our evalua-
tion shows that transport level security (SSL) is faster than
message level security, and should be used if there is no spe-
cial requirement to use message level security. For message
level security, WS-SecureConversation is generally fast, but
has a scalability problem.

1. Introduction

Security is one of the most important features for Grid
services [13]. There are several specifications used to add
security to Grid services, and some of them have been im-
plemented and are in use. Since Grid services are generally
constructed on top of the SOAP [8] layer, it is natural to add
security mechanisms to the SOAP or XML layer in order to
make services transport-layer independent. However, secu-
rity mechanisms implemented in the XML layer are slower
than any other transport security mechanism because they
involve slow XML manipulations. Because of the perfor-
mance penalty with current Java implementations, none of
these security mechanisms have yet to be widely adopted.
Also, because Web service implementations for Grid ap-
plications are still relatively new, it is not yet clear to ser-
vice providers which mechanism is most suitable for their
needs. It is necessary to clarify the requirements for secure
Grid services, and figure out what mechanism can satisfy
those requirements with acceptable performance. As the
first step, this paper presents the comparison of different se-
curity mechanisms on their performance and features.

Throughout the paper, we use two implementations,

Globus Toolkit 3.2 (GT3.2) [12] and XSUL [4], in order
to compare the supported functions and the performance.
Globus Toolkit is a widely-used toolkit for building Grid
applications and services. XSUL (also known as XSOAP4)
is a modular Java library that constructs Web services and
Grid services. XSUL is being developed at Indiana Univer-
sity.

The rest of the paper is organized as follows. Section 2
introduces several security mechanisms for Grid services
and their implementations. Section 3 presents the perfor-
mance evaluation for different security mechanisms, and
Section 4 discusses the result.

2. Taxonomy

This section introduces several security mechanisms for
Grid services. This paper focuses mainly on the integrity
of messages, so the following discussion does not cover en-
cryption, which concerns the confidentiality of messages.
Depending on the layer where security is implemented,
there are two categories of security mechanisms, transport
level security and message level security. Among the fol-
lowing security mechanisms, only the first one, Server Se-
cure Socket (SSL) [14], is a transport layer security mech-
anism. The rest of them are message level security mecha-
nisms.

2.1. Server Secure Socket (SSL)

This mechanism uses Server Secure Socket (SSL) with
GSI certificates, which are based on X.509 certificates [6].
SSL is lightweight because it does not involve any XML
manipulations. Also, except the initial handshake, SSL uses
a symmetric cipher, which is known to be much faster than
an asymmetric cipher. However, since it is transport layer
security, it does not work if the connection includes multiple
hops, which is a feature supported by SOAP.

Globus Toolkit 3 (GT3) supports this mechanism as GSI-
enabled HTTP-based protocol (httpg). However, httpg is
not supported beyond GT3.2 even though it still functions

and users can still use it. XSUL also supports SSL-based
security. It is equivalent to httpg.

SSL involves a handshake as its initial phase to estab-
lish an encrypted connection. This can be an overhead if
each invocation of a service involves this phase. XSUL sup-
ports HTTP KeepAlive option to keep the HTTP connection
open so that a client only needs to do the handshake once
when the client wants to interact with the server multiple
times. Unfortunately, GT3.2 does not offer any straight-
forward APIs to set the HTTP KeepAlive option. A client
needs to go through the handshake each time it invokes a
service.

2.2. XML-Signature

XML-Signature [10] is a standard for digital signatures
for XML documents. The usage of XML-Signature with
SOAP messages is described in WS-Security specifica-
tion [16]. With XML-Signature, each message is signed
with X509 certificate (GSI certificate). It ensures the in-
tegrity of a message, but it does not support replay-attack
prevention. As opposed to WS-SecureConversation, which
will be described later, this mechanism is stateless and does
not need any initial handshakes. Thus, it is suitable for a
single invocation of a service.

GT3.2 supports this mechanism as GSI Secure Message.
XSUL also supports the same mechanism.

2.3. WS-SecureConversation

WS-SecureConversation [15] is a relatively new proto-
col to establish and use secure contexts with SOAP mes-
sages. First, a secure context is established between a client
and a server. Once the security context is established, fol-
lowing messages are signed using the XML-Signature stan-
dard. It is faster because it uses a symmetric key to sign
messages, but it requires additional round trips to establish
a connection. This mechanism is suitable for multiple inter-
actions. Even though this mechanism also uses the XML-
Signature standard, we use the term, XML-Signature, for
the stateless mechanism described in Section 2.2, and WS-
SecureConversation for the stateful mechanism described
here.

GT3.2 supports a mechanism called GSI Secure Conver-
sation. GSI Secure Conversation does not follow the WS-
SecureConversation specification, but its basic mechanism
is the same as that of WS-SecureConversation. In this pa-
per we use GSI Secure Conversation to evaluate the perfor-
mance of WS-SecureConversation. Currently, XSUL does
not support this mechanism.

2.4. Capabilities

Unlike the rest of the mechanisms described here, a
capability-based system adds authorization information to
a message as well as ensuring the integrity of the message.
XSUL supports a capability-based authorization method
called XCAP. XCAP inserts capability tokens, which de-
scribe who can invoke which methods of a service using
the Security Assertion Makeup Language (SAML) [11], to
a SOAP message. This mechanism allows fine-grained au-
thorization without the user needing a local host account, or
adding complicated authorization mechanisms to the appli-
cation logic.

3. Performance evaluation

3.1. Evaluation environment

We measured the performance of the security mech-
anisms described in Section 2. First, we measured the
performance of a simple service, echo service, to evalu-
ate the overhead caused by adding security to a service
(Section 3.2). Then, we analyzed the overhead of XML-
Signature in detail (Section 3.3).

For the evaluation, we used Globus Toolkit 3.2 (GT3.2)
on Tomcat 4.1.30 [1]. We chose Tomcat as a service
container instead of the standalone container included in
Globus Toolkit because it is stated that the standalone con-
tainer is only for testing purposes and also because our pre-
evaluation shows that it is not as stable as Tomcat. The
options for delegation and authorization are set to ”none”
throughout the evaluation. The version of XSUL we used
is 1.1.5. Other relevant software consists of Sun J2SE
1.4.2 04, and Linux 2.4.21. Both the clients and the server
are on the same LAN, connected in 1000 Mbps Full Duplex
mode. All the hosts for both the server and clients are of
dual Xeon 2.8 GHz with 2048 MB memory.

3.2. Evaluation with a simple service

This evaluation focuses on the overhead caused by
adding security to a service. We used a simple service, echo
service, for the evaluation. A client sends a short string (5
bytes) to a server, and the server simply returns the string
to the client. During the evaluation, 1 to 8 clients keep in-
voking the service for 10 minutes for each case. (For initial
invocations of WS-SecureConversation, this time was re-
duced to one minute because of the problem described in
Section 3.4.) We measured the average response time of in-
vocations and the number of invocations per second that the
server processed. In all of the cases described, the first in-
vocation is not included to omit one time initialization cost,

 0

 2

 4

 6

 8

 10

 12

 1 2 3 4 5 6 7 8

A
ve

ra
ge

 r
es

po
ns

e
tim

e
(m

se
c)

Number of clients

XSUL (w/o KA)
XSUL (w/ KA)

GT3.2 (w/o KA)
XSUL (SSL w/ KA)

Figure 1. Average response time for echo ser-
vices without security.

such as class loading, and the performance of the rest of
invocations is averaged.

First, for comparison purposes, we studied the perfor-
mance of the various implementations without security.
Figure 1 shows the average response time for echo services.
The x-axis is the number of clients invoking the service, and
the y-axis is the average response time.

Without the HTTP KeepAlive option, XSUL is approxi-
mately twice faster than GT3.2. This is because XSUL ma-
nipulates XML with its fast XML Pull Parser [3]. The graph
also shows that the HTTP KeepAlive option reduces the re-
sponse time by half. This graph includes XSUL with SSL,
which will be described in greater detail later.

Figure 2 shows the average response time for echo ser-
vices with security. As a whole, transport layer security is
faster than message level security. XSUL’s SSL is faster
than any of the message level security mechanism. We note
that this is for one invocation including the cost of the ini-
tial handshake. With the HTTP KeepAlive option and mul-
tiple invocations, SSL is even faster. It is even comparable
with the non-secure versions in Figure 1. GT3.2’s transport
layer security (httpg) is twice slower than XSUL’s. We as-
sume that it is because httpg is no longer supported beyond
GT3.2, and hence it was not tuned for performance.

XML-Signature is much slower than transport level se-
curity. Compared to the non-secure versions, the difference
is almost two orders of magnitude. For XML-Signature,
XSUL is slightly slower than GT3.2. Because both GT3.2
and XSUL use the same security library, Apache XML
Security [2], to sign and verify XML messages, we were
surprised by the difference. We are currently investigat-
ing this behavior. For the XSUL implementation of XML-
Signature, we also measured the performance with the

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1 2 3 4 5 6 7 8

A
ve

ra
ge

 r
es

po
ns

e
tim

e
(m

se
c)

Number of clients

XSUL (XML-Sig w/o KA)
XSUL (XML-Sig w/ KA)

XSUL (SSL w/o KA)
XSUL (SSL w/ KA)

XSUL (Cap w/o KA)
GT3.2 (httpg w/o KA)

GT3.2 (XML-Sig w/o KA)
GT3.2 (WS-Conv Consecutive)

GT3.2 (WS-Conv Initial)

Figure 2. Average response time for echo ser-
vices with security.

HTTP KeepAlive option. The result shows that the HTTP
KeepAlive option does not improve the performance much.
It is because XML-Signature does not involve any hand-
shakes at the beginning. Also, because the overhead cause
by XML manipulations is so high that the performance im-
provement gained by the HTTP KeepAlive option is in-
significant.

The graph shows two kinds of numbers for WS-
SecureConversation. One is the response time for initial in-
vocations, which includes the time taken for the handshake
to establish the connection. The other is for the consecutive
invocations after the first invocation, which excludes over-
head for the handshake. Compared to GT3.2’s implemen-
tation of XML-Signature, the initial invocations are slightly
slower. On the other hand, the consecutive invocations are
almost half of XML-Signature. This means that if a client
invokes the service more than twice, it is worth using WS-
SecureConversation instead of XML-Signature. A prob-
lem with WS-SecureConversation is that the server needs
to keep the context for each client. We will discuss this
problem in Section 3.4 in detail.

The capability-based system is more than two times
slower than XML-Signature. It is because the capability
mechanism needs additional XML manipulations on top of
the operations needed for XML-Signature. On the client
side, it inserts capability tokens to the SOAP header before
it signs a message. On the server side, it verifies the sig-
nature for capability tokens on top of the verification of the
message itself.

Table 1. XML-Signature break down

(msec) Phase (msec)
Signing 1542.6 Conv. to DOM 7.7

Canonicalization 1391.2
Signature calculation 2.2
Conv. from DOM 127.0
Other 14.5

Verification 1445.8 Conv. to DOM 10.2
Cert. path validation 22.2
Canonicalization 1395.5
Signature verification 0.4
Other 17.4

3.3. XML-Signature break down

For the future improvement of XML-Signature perfor-
mance, we measured the time taken for each phase to inves-
tigate the bottleneck. Since the signing and the verification
of a message are the only additional processes added for
XML-Signature. We broke down these two processes. For
the evaluation, we used the XSUL implementation because
XSUL is more tuned for XML handling and has better per-
formance. The service used for the measurement is echo
service with array size 1024. The performance of 100 in-
vocations is averaged. Again, the first invocation is not in-
cluded to omit one time initialization cost.

Table 1 shows the time taken for each phase. The most
of the time is spent for the canonicalization of XML [9]
(1391.2 msec out of 1542.6 msec for signing, and 1395.5
msec out of 1445.8 msec for verification). To calculate a
signature, first, the digest of the message body is calculated
using SHA-1 algorithm [5]. This phase takes less than 0.1
msec, and is not included in the table. Then, the digest along
with various information related to signing is used to calcu-
late the signature. An asymmetric cipher algorithm based
on RSA [7] is used in this phase. However, it only takes 2.2
msec for signing, and 0.4 msec for verification because the
size of the data signed is small.

XSUL uses XML Pull Parser for XML parsing and the
internal XML representation. To use a third party security
library, Apache XML Security, for signing and verification,
it needs to convert the internal representation to a DOM tree.
This conversion takes 7.7 msec for signing, and 10.2 msec
for verification. In case of the signing, after inserting the
signature to the SOAP header, it needs to convert the DOM
tree back to the XML Pull Parser representation. This takes
more time (124.9 msec) than the conversion from the XML
Pull Parser representation to the DOM tree. It is because
the canonicalization increases the size of XML documents,
making the conversion task more complicated. Note that

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 200 400 600 800 1000 1200 1400 1600 1800

R
es

po
ns

e
tim

e

Number of invocations

WS-Conv Initial

Figure 3. Response time of WS-
SecureConversation with consecutive new
connections.

even with the cost of the conversion of the XML represen-
tation, it is obvious that usage of XML Pull Parser has a big
advantage for large arrays [17].

3.4. A WS-SecureConversation issue

With WS-SecureConversation, a server needs to hold a
state for each client. Because it is message level security,
even though the transport level connection (TCP connec-
tion) is closed, a server still needs to keep the state for fea-
ture connections. There is no explicit way to end the mes-
sage level connection. If a server is accessed by a large
number of clients, the amount of states the server needs to
hold will be huge.

Figure 3 shows the response time for each invocation.
The x-axis is the number of invocations, and the y-axis is the
response time for each invocation. One client keeps invok-
ing a service on the server with the WS-SecureConversation
mechanism, but each invocation sets up a new connection.
As the result, the server has to hold large amount of connec-
tion status information. The response time is stable until the
1380th invocation. However, after that the time increases
dramatically. The graph stops at the 1680th invocation be-
cause the server failed to accept any more connections from
the clients by throwing out-of-memory exceptions.

4. Discussion

As a whole, transport level security, SSL, is the fastest.
If a client and a server need multiple interactions, it bene-
fits performance most by using it with the HTTP KeepAlive
option, but even without the HTTP KeepAlive option, SSL

is still faster than any other message level security mecha-
nisms. The drawback of SSL is that it is implemented in
the transport layer. Hence, it does not work for a connec-
tion that includes multiple hops. Also, Unlike the XML-
based security mechanisms, SSL does not have the ability
to sign only specific portions of a message. Even though
usage of this feature is not common currently, it might be-
come important as Grid services mature. For example, a
service might need to access some other services and en-
capsulate the results, which is signed by each service, to the
reply message to the client. For those rich features of XML-
based security, Globus Toolkit encourages users to use mes-
sage level security. Transport level security is not supported
beyond GT3.2. However, at this moment, most of the ser-
vices do not support those features. Thus, transport level
security can be used in most of the cases. We should have
an option to use transport level security if performance is
important.

Message level security is generally slower than transport
level security. This is because signing of XML messages in-
volves XML manipulations. In particular, XML messages
have to be canonicalized before they are signed or verified.
The current implementation of XML canonicalizer uses a
DOM parser to canonicalize XML documents. Thus, it does
not support stream processing, which prevents pipe-lining
each step of the invocation process. This is unfortunate. The
XSUL implementation of XML-Signature minimizes the
cost of XML manipulations with its fast XML Pull Parser
except the XML canonicalization, which XSUL rely on a
third party library, Apache XML Security. As the result,
the most of the overhead for XML-Signature is caused by
the XML canonicalization. We expect great improvement
of the performance by optimizing the XML canonicaliza-
tion. The possible optimization is to implement a stream
XML canonicalizer, or to directly convert the internal XML
representation to the canonicalized XML string.

The initial invocations of WS-SecureConversation
turned out to be faster than expected. They are only
slightly slower than XML-Signature. The consecutive in-
vocations are almost half the cost of XML-Signature for
small messages. This means that if a client exchanges
messages more than once, WS-SecureConversation should
be used instead of XML-Signature. Even if users use
WS-SecureConversation instead of XML-Signature for one
message exchange, the overhead is still acceptable.

We compared the performance of the security mecha-
nisms in more various conditions, such as different array
size, and in a WAN environment, but they are not included
in this paper because of the page limitation. The result and
analysis are in the full version of this paper [17].

5. Conclusion

We introduced several security mechanisms used to add
security to Grid services. Our performance evaluation
showed that SSL is faster than message level security,
and should be used if message level security is not re-
quired. If a client invokes a service multiple times, it should
also use the HTTP KeepAlive option. Among message
level security, WS-SecureConversation should be used. For
one-time invocations, XML-Signature is faster than WS-
SecureConversation, but even if WS-SecureConversation is
used, the performance penalty is negligible. However, WS-
SecureConversation has a scalability problem if it is used
for a service that is accessed by a huge number of clients.

References

[1] Apache Tomcat. http://jakarta.apache.org/tomcat/.
[2] Apache XML Security. http://xml.apache.org/security/.
[3] Common API for XML Pull Parsing.

http://www.xmlpull.org/.
[4] WS/XSUL: Web Services/XML Services Utility Library.

http://www.extreme.indiana.edu/xgws/xsul/.
[5] FIPS PUB 180-1. Secure Hash Standard. US. Department of

Commerce/National Institute of Standards and Technology,
May 1993.

[6] ITU Recommendation X.509 version 3. Information Tech-
nology - Open Systems Interconnection - The Directory Au-
thentication Framework, August 1997.

[7] RFC 2437. PKCS #1: RSA Cryptography Specifications
Version 2.0, October 1998.

[8] Simple Object Access Protocol (SOAP) 1.1, W3C,
May 2000. http://www.w3.org/TR/2000/NOTE-SOAP-
20000508/.

[9] Canonical XML Version 1.0, W3C, March 2001.
http://www.w3.org/TR/xml-c14n.

[10] XML-Signature Syntax and Processing, W3C, February
2002. http://www.w3.org/TR/xmldsig-core/.

[11] Security Assertion Markup Language (SAML) Version 1.1,
OASIS, August 2003.

[12] I. Foster and C. Kesselman. Globus: A Metacomputing In-
frastructure Toolkit. International Journal of Supercomputer
Applications, 11(2):115–128, 1997.

[13] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke. The
Physiology of the Grid: An Open Grid Services Architec-
ture for Distributed Systems Integration. Open Grid Service
Infrastructure WG, Global Grid Forum, June 2002.

[14] A. O. Freier, P. Karlton, and P. C. Kocher. The SSL Protocol
Version 3.0, November 1996.

[15] IBM, Microsoft, RSA Security, and VeriSign. Web Services
Secure Conversation Language (WS-SecureConversation)
Version 1.0, December 2002.

[16] IBM, Microsoft, and VeriSign. Web Services Security (WS-
Security) Version 1.0, April 2002.

[17] S. Shirasuna, A. Slominski, L. Fang, and D. Gan-
non. Performance Comparison of Security
Mechanisms for Grid Services, August 2004.
http://www.extreme.indiana.edu/labpubs.html.

